ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ ЛЕНИНГРАДСКОЙ ОБЛАСТИ «ЛЕНИНГРАДСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМЕНИ А. С. ПУШКИНА»

РАБОЧАЯ ПРОГРАММА учебной дисциплины

ОП 10 ЧИСЛЕННЫЕ МЕТОДЫ

по специальности среднего профессионального образования **09.02.07 Информационные системы и программирование** (общеобразовательная подготовка)

(год начала подготовки -2025)

Программа учебной дисциплины «**Численные методы**» является частью основной профессиональной образовательной программы **09.02.07** «**Информационные системы и программирование**», составлена в соответствии с требованиями ФГОС СПО и примерной основной образовательной программы по специальности.

Организация-разработчик: ГАОУ ВО ЛО «ЛГУ им. А.С. Пушкина».

Разработчик: Петров Юрий Николаевич, преподаватель ГАОУ ВО ЛО «ЛГУ им. А.С. Пушкина».

Рассмотрено на заседании ПЦК информационных, экономических и естественно - научных дисциплин

Протокол № 2 от «11» октября 2024 г.

1. ПАСПОРТ РАБОЧЕЙ ПРОГРАММЫ УЧЕБНОЙ ДИСЦИПЛИНЫ

1.1. Область применения рабочей программы

Рабочая программа учебной дисциплины «Численные методы» является частью основной профессиональной образовательной программы подготовки специалистов среднего звена в соответствии с ФГОС по специальности СПО 09.02.07 Информационные системы и программирование, базовая подготовка.

Обучение по дисциплине ведется на русском языке.

При реализации программы учебной дисциплины методы и средства обучения и воспитания, образовательные технологии не могут наносить вред физическому или психическому здоровью обучающихся

При реализации программы учебной дисциплины методы и средства обучения и воспитания, образовательные технологии не могут наносить вред физическому или психическому здоровью обучающихся.

Воспитание обучающихся при освоении учебной дисциплины осуществляется на основе включаемых в образовательную программу рабочей программы воспитания и календарного плана воспитательной работы на текущий учебный год.

Воспитательная деятельность, направлена на развитие личности, создание условий для самоопределения и социализации обучающихся на основе социокультурных, духовно нравственных ценностей и принятых в российском обществе правил и норм поведения в интересах человека, семьи, общества и государства, формирование у обучающихся чувства патриотизма, гражданственности, уважения к памяти защитников Отечества и подвигам Героев Отечества, закону и правопорядку, человеку труда и старшему поколению, взаимного уважения, бережного отношения к культурному наследию и традициям многонационального народа Российской Федерации, природе и окружающей среде.

1.2. Место учебной дисциплины в структуре основной профессиональной образовательной программы

Дисциплина «Численные методы» относится к общепрофессиональному циклу.

Дисциплина имеет межпредметные связи с дисциплинами «Элементы высшей математики», «Основы алгоритмизации и программирования», профессиональными модулями «Разработка программных модулей» и «Разработка, администрирование и защита баз данных».

1.3. Цели и задачи учебной дисциплины – требования к результатам освоения учебной дисциплины

Целью освоения дисциплины является изучение основных численных методов решения стандартных математических задач, а также основ математического моделирования.

В результате освоения дисциплины обучающийся осваивает элементы компетенций:

Код	Планируемые результаты обучения
компетенции	планируемые результаты обучения
OK 01 OK 02	Знать:
ОК 04 ОК 05	- методы хранения чисел в памяти электронно-вычислительной машины

OK 09			
ПК 1.1 ПК 1.2			
ПК 1.5 ПК 11.1			

(далее – ЭВМ) и действия над ними, оценку точности вычислений;

 методы решения основных математических задач – интегрирования, дифференцирования, решения линейных и трансцендентных уравнений и систем уравнений с помощью ЭВМ.

Уметь:

- использовать основные численные методы решения математических задач;
- выбирать оптимальный численный метод для решения поставленной задачи;
- давать математические характеристики точности исходной информации и оценивать точность полученного численного решения;
- разрабатывать алгоритмы и программы для решения вычислительных задач, учитывая необходимую точность получаемого результата.

1.4. Количество часов на освоение учебной дисциплины

Образовательная учебная нагрузка студента составляет 48 часов, в том числе: обязательная аудиторная учебная нагрузка студента 44 часа, в том числе промежуточная аттестация 2 часа; консультации (во взаимодействии с преподавателем) 2 часа; самостоятельная работа студента 2 часа.

2. СТРУКТУРА И СОДЕРЖАНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ

2.1. Объем учебной дисциплины и виды учебных работ

Вид учебной работы	Объем часов	
Образовательная учебная нагрузка (всего)	48	
Обязательная аудиторная учебная нагрузка (всего)	42	
в том числе:		
лекции/уроки	21	
практические занятия	21	
Самостоятельная работа студента (всего)	4	
Консультации (во взаимодействии с преподавателем) 2		
Промежуточная аттестация в форме дифференцированного зачета (4 семестр)		

В соответствии со структурой учебной дисциплины ниже приведена содержательная характеристика дисциплины по всем видам учебной деятельности обучающегося.

2.2. Тематический план и содержание учебной дисциплины

Наименование разделов и тем	Содержание учебного материала и формы организации деятельности обучающихся		Коды компетенций, формированию которых способствует элемент программы
1	2	3	
Раздел 1. Элементы теории	погрешностей	3	OK 01 OK 02 OK 04
Тема 1.1. Погрешности вычислений	Содержание учебного материала Основные понятия и определения. Оценка погрешностей основных математических операций при компьютерных вычислениях. Источники и классификация погрешностей результата численного решения задачи	2	ОК 05 ОК 09 ПК 1.1 ПК 1.2 ПК 1.5 ПК 11.1
	Практические занятия Решение задач по теме «Вычисление абсолютной и относительной погрешности. Нахождение числа верных цифр»	1	
Раздел 2. Приближённые р	ешения алгебраических и трансцендентных уравнений		OK 01 OK 02 OK 04
Тема 2.1. Решение	Содержание учебного материала	4	ОК 05 ОК 09 ПК 1.1
нелинейных уравнений	Постановка задачи решение нелинейного уравнения. Локализация и отделение корня.	2	ПК 1.2 ПК 1.5 ПК 11.1
	Методы половинного деления, хорд, касательных, простых итераций. Оценка погрешности.	2	
	Практические занятия		
	Решение задач по теме «Локализация и отделение корня. Методы решения нелинейных уравнений»	2	
	Вычисление корня уравнения с заданной точностью	2	

Раздел 3. Решение систем л	инейных алгебраических уравнений		OK 01 OK 02 OK 04
Тема 3.1. Решение систем линейных Содержание учебного материала основные понятия и определения. Метод Гаусса. LU-разложение. Метод алгебраических Холецкого. Метод простых итераций. Метод Зейделя. Оценка погрешности решения. Невязка.			ОК 05 ОК 09 ПК 1.1 ПК 1.2 ПК 1.5 ПК 11.1
	Практические занятия	3	
	Решение задач по теме «Метод Гаусса»	1	
	Решение системы линейных уравнений прямым и итерационным методом.	2	
Раздел 4. Интерполирован	ие и экстраполирование функций		OK 01 OK 02 OK 04
Тема 4.1. Приближение	Содержание учебного материала	4	ОК 05 ОК 09 ПК 1.1
табличных функций	Постановка задачи приближения. Интерполяционные полиномы Лагранжа и Ньютона. Экстраполяция.	2	- ПК 1.2 ПК 1.5 ПК 11.1
	Квадратичное приближение. Метод наименьших квадратов. Интерполяция сплайнами.	2	_
	Практические занятия	4	
	Решение задач по теме «Квадратичное приближение»	2	
	Приближение табличных функций	2	
Раздел 5. Численное интегр	оирование и дифференцирование		OK 01 OK 02 OK 04 OK 05 OK 09 ПК 1.1
Тема 5.1. Численное	Содержание учебного материала	4	ПК 1.2 ПК 1.5
интегрирование	Приближение производных конечными разностями. Численное	2	ПК 11.1
	интегрирование: методы прямоугольников, трапеций и Симпсона. Оценка погрешности. Интегрирование с помощью формул Гаусса.	2	+
	Практические занятия	4	-
	Решение задач по теме «Приближение производных конечными разностями»	2	
	Вычисление интегралов методами численного интегрирования	2	

Раздел 6. Численное решение обыкновенных дифференциальных уравнений			OK 01 OK 02 OK 04	
Тема 6.1. Решение задачи	Содержание учебного материала	3	ОК 05 ОК 09 ПК 1.1	
Коши для обыкновенных	Задача Коши. Приближенные и численные методы решения ДУ. Метод Эйлера		ПК 1.2 ПК 1.5	
дифференциальных	и его модификации. Методы Рунге-Кутты.		ПК 11.1	
уравнений	равнений Практические занятия			
	1			
	2			
Самостоятельная работа обучающихся				
Консультации				
Промежуточная аттестация в форме дифференцированного зачета		2		
Всего:				

3. УСЛОВИЯ РЕАЛИЗАЦИИ РАБОЧЕЙ ПРОГРАММЫ УЧЕБНОЙ ДИСЦИПЛИНЫ

3.1. Материально-техническое обеспечение дисциплины

Кабинет математических дисциплин, включающий рабочее место преподавателя; рабочие места обучающихся; учебные наглядные пособия (таблицы, плакаты); комплект учебно-методической документации; комплект учебников (учебных пособий) по количеству обучающихся; компьютер с лицензионным программным обеспечением; мультимедиапроектор; калькуляторы.

Автоматизированное рабочее место преподавателя (компьютер: процессор Intel (R) Core (TM) i3-3220 CPU (3.30 $\Gamma\Gamma\mu$), оперативной памятью 4 Γ 6, HDD 500 Gb), программное обеспечение – Linux 7.

12 автоматизированных рабочих мест обучающихся: процессор Intel (R) Core (TM) i3-3220 CPU (3.30 $\Gamma\Gamma$ ц), оперативной памятью 4 Γ 6, HDD 500 Gb, программное обеспечение – Linux 7:

Учебная аудитория для проведения лекций, практических занятий / семинаров, групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации, включающая презентационную технику (проектор, экран, компьютер, звуковоспроизводящее оборудование); рабочее место преподавателя; столы, стулья для обучающихся.

Учебная аудитория для самостоятельной работы, включающая автоматизированные рабочие места обучающихся с доступом в Интернет.

3.2. Информационное обеспечение обучения

- а) основная литература:
- 1. Численные методы : учебник и практикум для среднего профессионального образования / У. Г. Пирумов [и др.] ; под редакцией У. Г. Пирумова. 5-е изд., перераб. и доп. Москва : Издательство Юрайт, 2024. 421 с. (Профессиональное образование). ISBN 978-5-534-11634-2. Текст : электронный // Образовательная платформа Юрайт [сайт]. URL: https://www.urait.ru/bcode/542793.
- 2. Зенков, А. В. Численные методы: учебное пособие для среднего профессионального образования / А. В. Зенков. 2-е изд., перераб. и доп. Москва: Издательство Юрайт, 2024. 136 с. (Профессиональное образование). ISBN 978-5-534-16731-3. Текст: электронный // Образовательная платформа Юрайт [сайт]. URL: https://www.urait.ru/bcode/538502.
 - b) дополнительная литература:
- 1. Гателюк, О. В. Численные методы: учебное пособие для среднего профессионального образования / О. В. Гателюк, Ш. К. Исмаилов, Н. В. Манюкова. Москва: Издательство Юрайт, 2024. 140 с. (Профессиональное образование). ISBN 978-5-534-07480-2. Текст: электронный // Образовательная платформа Юрайт [сайт]. URL: https://www.urait.ru/bcode/538734.
- 2. Мойзес, О. Е. Информатика. Углубленный курс: учебное пособие для среднего профессионального образования / О. Е. Мойзес, Е. А. Кузьменко. Москва: Издательство Юрайт, 2023. 164 с. (Профессиональное образование). ISBN 978-5-534-07980-7. Текст : электронный // Образовательная платформа Юрайт [сайт]. URL: https://www.urait.ru/bcode/516858.

с) ресурсы информационно-телекоммуникационной сети «Интернет», электронные ресурсы (в том числе электронные библиотечные системы):

№	Ссылка на	Наименование разработки в	Доступность
	информационный	электронной форме	
	ресурс		
1.	ЭБС «Юрайт»	ЭБС на платформе «Юрайт».	Индивидуальный
	https://urait.ru	Учебники и учебные пособия	неограниченный
		издательства «Юрайт» и др.	доступ
2.	ЭБС	ЭБС на платформе «Университетская	Индивидуальный
	«Университетская	библиотека онлайн».	неограниченный
	библиотека онлайн»	Учебники и учебные пособия	доступ
	https://biblioclub.ru/	издательств «Дашков и К ^о »,	
		«Проспект», «Юнити-Дана», и др.	

d) информационные технологии, используемые при осуществлении образовательного процесса по дисциплине (включая перечень программного обеспечения и информационно-справочных систем):

- лицензионное ПО общего назначения.

4. КОНТРОЛЬ И ОЦЕНКА РЕЗУЛЬТАТОВ ОСВОЕНИЯ УЧЕБНОЙ ДИСЦИПЛИНЫ

4.1. Оценивание уровня учебных достижений обучающихся

Оценивание уровня учебных достижений обучающихся по дисциплине осуществляется в виде текущего и промежуточного контроля.

Текущий контроль успеваемости по дисциплине осуществляется в формах:

- выполнение и защита практических работ: отчет по практической работе представляется в печатном виде в формате, предусмотренном шаблоном отчета. Защита практической работы проходит в форме собеседования студента с преподавателем по выполненной работе и ответов на вопросы по теме практической работы;
 - тестирования.

Знания, умения и навыки обучающихся при текущем контроле определяются оценками «отлично», «хорошо», «удовлетворительно», «неудовлетворительно».

Промежуточный контроль по дисциплине осуществляется в форме дифференцированного зачета, при этом проводится оценка компетенций, сформированных по дисциплине.

Критерии оценивания результатов обучения по дисциплине:

Знания, умения и навыки обучающихся при промежуточной аттестации **в форме** дифференцированного зачета определяются оценками «зачтено (отлично)», «зачтено (хорошо)», «зачтено (удовлетворительно)», «не зачтено (неудовлетворительно)».

«Зачтено (отлично)» — обучающийся глубоко и прочно усвоил весь программный материал, исчерпывающе, последовательно, грамотно и логически стройно его излагает, не затрудняется с ответом при видоизменении задания, свободно справляется с задачами и

практическими заданиями, правильно обосновывает принятые решения, умеет самостоятельно обобщать и излагать материал, не допуская ошибок.

«Зачтено (хорошо)» – обучающийся твердо знает программный материал, грамотно и по существу излагает его, не допускает существенных неточностей в ответе на вопрос, может правильно применять теоретические положения и владеет необходимыми умениями и навыками при выполнении практических заданий.

«Зачтено (удовлетворительно)» – обучающийся усвоил только основной материал, но не знает отдельных деталей, допускает неточности, недостаточно правильные формулировки, нарушает последовательность в изложении программного материала и испытывает затруднения в выполнении практических заданий.

«Не зачтено (неудовлетворительно)» – обучающийся не знает значительной части программного материала, допускает существенные ошибки, с большими затруднениями выполняет практические задания, задачи.

Результаты обучения	Формы и методы контроля и оценки
(освоенные умения, усвоенные знания)	результатов обучения
1	2
Умения:	
использовать основные численные методы	защита практической работы,
решения математических задач;	дифференцированный зачет
выбирать оптимальный численный метод для	защита практической работы,
решения поставленной задачи;	дифференцированный зачет
давать математические характеристики	защита практической работы,
точности исходной информации и оценивать	дифференцированный зачет
точность полученного численного решения;	
разрабатывать алгоритмы и программы для	защита практической работы,
решения вычислительных задач, учитывая	дифференцированный зачет
необходимую точность получаемого	
результата.	
Знания:	
методы хранения чисел в памяти электронно-	устное собеседование при защите
вычислительной машины (далее – ЭВМ) и	практической работы, дифференцированный
действия над ними, оценку точности	зачет
вычислений;	
методы решения основных математических	устное собеседование при защите
задач – интегрирования, дифференцирования,	практической работы, дифференцированный
решения линейных и трансцендентных	зачет
уравнений и систем уравнений с помощью	
ЭВМ.	

4.2. Методические указания для обучающихся по освоению учебной дисциплины. Организация образовательного процесса

Дисциплина имеет межпредметные связи с дисциплинами «Элементы высшей математики», «Основы алгоритмизации и программирования», профессиональными

модулями «Разработка программных модулей» и «Разработка, администрирование и защита баз данных».

Дисциплина предусматривает занятия лекционного типа и практические занятия, проводимые в компьютерном классе.

В рамках общего объема часов, отведенных для изучения дисциплины, предусматривается самостоятельное изучение теоретического материала с самоконтролем, изучение теоретического материала при подготовке к защите практических работ, итоговое повторение теоретического материала при подготовке к дифференцированному зачету.

Успешное изучение курса требует посещения лекционных занятий, активной работы на практических занятиях, выполнения всех учебных заданий преподавателя, изучения основной и дополнительной литературы, лекционных материалов, опорных конспектов и других дидактических материалов.

Программой предусмотрены консультации преподавателя по разделам курса (очно или онлайн).

4.3. Фонд оценочных средств

Порядок оценки освоения обучающимися учебного материала определяется содержанием следующих разделов дисциплины:

№ п/п	Наименование раздела дисциплины	Компетенции (части компетенций)	Критерии оценивания	Оценочные средства текущего контроля успеваемости	Шкала оценивания
1.	Элементы теории погрешностей	ОК 01, ОК 02, ОК 04, ОК 05, ОК 09, ПК 1.1, ПК 1.2, ПК 1.5, ПК 11.1.	Знать основные понятия теории погрешностей. Уметь оценивать абсолютную и относительную погрешности. Определять верные цифры в числе.	Практическое занятие	Отлично Хорошо Удовлетворительно Неудовлетворительно
2.	Приближённые решения алгебраических и трансцендентных уравнений	OK 01, OK 02, OK 04, OK 05, OK 09, IIK 1.1, IIK 1.2, IIK 1.5, IIK 11.1.	Формулировать условия использования различных методов, выбирать более подходящий алгоритм решения уравнений, производить оценку погрешности	Практическое занятие Тест	Отлично Хорошо Удовлетворительно Неудовлетворительно
3.	Решение систем линейных алгебраических уравнений	OK 01, OK 02, OK 04, OK 05, OK 09, IIK 1.1, IIK 1.2, IIK 1.5, IIK 11.1.	Демонстрировать знание основных алгоритмов решения СЛАУ, использовать различные методы, оценивать погрешности, выбирать наиболее подходящий метод	Практическое занятие Тест	Отлично Хорошо Удовлетворительно Неудовлетворительно
4.	Интерполирование и экстраполирование функций	OK 01, OK 02, OK 04, OK 05, OK 09, ПК 1.1, ПК 1.2, ПК 1.5, ПК 11.1.	Распознавать различные подходы в приближении функций, выбирать наиболее применимый в каждой конкретной	Практическое занятие Тест	Отлично Хорошо Удовлетворительно Неудовлетворительно

№ п/п	Наименование раздела дисциплины	Компетенции (части компетенций)	Критерии оценивания	Оценочные средства текущего контроля успеваемости	Шкала оценивания
			ситуации, уметь оценить погрешность и знать способы ее уменьшения		
5.	Численное интегрирование и дифференцирование	OK 01, OK 02, OK 04, OK 05, OK 09, IIK 1.1, IIK 1.2, IIK 1.5, IIK 11.1.	Понимать сферу применения методов интегрирования, демонстрировать знания условий использования, классифицировать методы по точности и трудоемкости	Практическое занятие Тест	Отлично Хорошо Удовлетворительно Неудовлетворительно
6.	Численное решение обыкновенных дифференциальных уравнений	OK 01, OK 02, OK 04, OK 05, OK 09, IIK 1.1, IIK 1.2, IIK 1.5, IIK 11.1.	Описывать и иллюстрировать методы решения задачи Коши, применять их на практике, сравнивать погрешности.	Практическое занятие Тест	Отлично Хорошо Удовлетворительно Неудовлетворительно
	Итого:	OK 01, OK 02, OK 04, OK 05, OK 09, IIK 1.1, IIK 1.2, IIK 1.5,	Форма контроля	Оценочные средства промежуточной аттестации	Шкала оценивания
		ПК 11.1.	Дифференцированный зачет	Устный дифференцированный зачет перечень вопросов	Зачтено (отлично) Зачтено (хорошо) Зачтено (удовлетворительно) Не зачтено (неудовлетворительно)

ТИПОВЫЕ КОНТРОЛЬНЫЕ ЗАДАНИЯ ИЛИ ИНЫЕ МАТЕРИАЛЫ, НЕОБХОДИМЫЕ ДЛЯ ОЦЕНКИ ЗНАНИЙ, УМЕНИЙ, НАВЫКОВ И (ИЛИ) ОПЫТА ДЕЯТЕЛЬНОСТИ, ХАРАКТЕРИЗУЮЩИХ ЭТАПЫ ФОРМИРОВАНИЯ КОМПЕТЕНЦИЙ В ПРОЦЕССЕ ОСВОЕНИЯ ОПОП СПО

Контроль успеваемости по дисциплине осуществляется с помощью следующих оценочных средств:

ПРАКТИЧЕСКАЯ РАБОТА

№ п/п	Номер раздела дисциплины	Наименование практической работы	Трудоемкость, часов
1	2	2 Вычисление корня уравнения с заданной точностью	
2	3 Решение системы линейных уравнений прямым и итерационным методом		2
3	4	Приближение табличных функций	2
4	5	Вычисление интегралов методами численного интегрирования	2
5	6	Применение численных методов для решения дифференциальных уравнений	2
		Итого:	10

Примеры задания для практической работы

Каждый студент получает индивидуальный вариант работы.

Работа № 1

Тема: Вычисление корня уравнения с заданной точностью

1. Исходные данные:

$$\ln x + (x+1)^3 = 0$$
; $\varepsilon = 0,001$

- 2. Содержание работы:
- 1) Графическое отделение корня.
- 2) Решение уравнения методом половинного деления.
- 3) Решение уравнения методом касательных.
- 4) Решение уравнения методом итераций.

Работа № 2

Тема: Решение системы линейных уравнений прямым и итерационным методом

Исходные данные:

$$\mathbf{A} = \begin{pmatrix}
1,2 & 1,8 & -2,2 & -4,1 \\
10 & -5,1 & 1,2 & 5,5 \\
2,2 & -30,1 & 3,1 & 5,8 \\
10 & 2,4 & -30,5 & -2,2
\end{pmatrix}, \mathbf{b} = \begin{pmatrix}
1,3 \\
1,2 \\
10 \\
34,1
\end{pmatrix}; \mathbf{A} = \begin{pmatrix}
1,65 & -1,76 & 1,77 \\
-1,76 & 3,04 & -2,61 \\
1,77 & -2,61 & 3,18
\end{pmatrix}, \mathbf{b} = \begin{pmatrix}
2,15 \\
0,82 \\
-0,73
\end{pmatrix}$$

2. Содержание работы:

II Система 4-го порядка

- 1) Решить систему методом Гаусса с выбором главного элемента по столбцам.
- 2) Вычислить невязку и ее норму.

3) Построить LU-разложение и решить систему с другой правой частью.

III Система 3-го порядка

- 1) Проверить, что матрица системы положительно определенная.
- 2) Вычислить число обусловленности системы.
- 3) Решить систему методом Гаусса.
- 4) Решить систему методом Холецкого (квадратного корня).
- 5) Решить систему методом простых итераций с точностью $\varepsilon = 10^{-2}$.
- 6) Во всех случаях вычислить норму невязки.
- 7) Сравнить методы по числу необходимых арифметических операций.

Работа № 3

Тема: Приближение табличных функций

1. Исходные данные:

$$f(x) = \frac{\ln x}{\sqrt{x}}$$
 [2;5]

- 2. Содержание работы:
- 1) Для функции f(x) на отрезке [a;b] построить функцию вида $y=a_0+a_1x+a_2x^2$ и $y=a_0+a_1x+a_2x^2+a_3x^3+a_4x^4$, используя МНК по 11-ти точкам с равномерной сеткой.
- 2) Для функции f(x) построить интерполяционный полином Лагранжа по 3 и 5 узлам с равномерной сеткой.
- 3) Оценить погрешность.
- 3. Представление результатов:

Работа № 4

Тема: Вычисление интегралов методами численного интегрирования

1. Исходные данные:

$$\int_{0}^{\frac{\pi}{2}} \frac{\sin x + \sin^{3} x}{\cos 2x} dx$$
1)
$$\int_{0}^{0} \frac{\cos 2x}{\cos 2x} dx$$
2)
$$\int_{0.7}^{\frac{\pi}{6}} \frac{(2 - x^{2}) \sin x dx}{\sqrt{2x^{2} + 0.3}}$$
3)
$$\int_{0.7}^{1.6} \frac{dx}{\sqrt{2x^{2} + 0.3}}$$
4)
$$\int_{1.2}^{1.6} \frac{\sin(2x - 2.1)}{x^{2} + 1} dx$$

- 2. Содержание работы:
- 1) Предварительно вычислить интегралы (1) и (2) аналитически;
- а) (1) по формулам прямоугольника и оценить погрешность;
- b) (2) по формулам трапеций и парабол для числа разбиений n=10 и n=20 и оценить погрешность;
- с) сравнить с теоретической оценкой погрешности для каждого метода.
- 2) По заданной погрешности ε подобрать число разбиений, а также подобрать число разбиений по правилу Рунге. Вычислить интеграл
- а) (3) по формуле трапеций, $\varepsilon = 0.0001$;
- b) (4) по формуле парабол, $\varepsilon = 0,00001$.

Работа № 5

Тема: Применение численных методов для решения дифференциальных уравнений

1. Исходные данные:

$$y' = 1 + 0, 2y \sin x - y^2, y(0) = 0$$

- 2. Содержание работы:
- 1) Решить задачу Коши численно методом Эйлера для различного шага: h=0,1;0,05;0,01 на отрезке $\begin{bmatrix}0;1\end{bmatrix}$; Составить таблицу значений в 11 точках промежутка
- 2) Решить задачу Коши численно методом Рунге-Кутта для различного шага: h=0,1;0,05 на отрезке $\begin{bmatrix} 0;1 \end{bmatrix}$; Составить таблицу значений в 11 точках промежутка
- 3) Построить графики полученных функций
- 4) Оценить погрешность, сравнив количество совпадающих цифр при различных шагах.

Представление результатов:

Отчет по практической работе представляется в печатном виде в формате, предусмотренном шаблоном отчета по работе.

Должны быть представлены все промежуточные расчеты в виде таблиц, графики сравнения различных методов. В выводах необходимо сравнить преимущества использования каждого метода.

Шкала оценивания и критерии оценки выполнения:

Критерий	Количество баллов
Выполнены все задания работы	5
Выполнены все задания работы с замечаниями	4
Выполнены все задания работы не полно и с замечаниями	3

Защита по практической работы

Защита отчета проходит в форме доклада обучающегося по выполненной работе и ответов на вопросы преподавателя.

В случае если оформление отчета и доклад обучающегося во время защиты соответствуют указанным требованиям, обучающийся получает максимальное количество баллов.

Основаниями для снижения количества баллов в диапазоне от **max** до **min** являются:

- небрежное выполнение,
- низкое качество графического материала (неверный выбор масштаба чертежей, отсутствие указания единиц измерения на графиках),
- неверное округление результатов.

Отчет не может быть принят и подлежит доработке в случае:

- отсутствия необходимых разделов,
- отсутствия необходимого графического материала и таблиц расчетов,
- некорректного применения методов.

Шкала оценивания и критерии оценки:

Оценка	Критерий
«5» (отлично)	выполнены все задания практической работы, обучающийся четко и без ошибок
	ответил на все контрольные вопросы, представлен отчет в соответствие с
	требованиями.
«4» (хорошо)	выполнены все задания практической работы; обучающийся ответил на все
	контрольные вопросы с замечаниями, представлен отчет в соответствие с
	требованиями.
«3»	выполнены все задания практической работы с замечаниями; обучающийся
(удовлетворительно)	ответил на все контрольные вопросы с замечаниями, представлен отчет в
	соответствие с требованиями.
«2»	обучающийся не выполнил или выполнил неправильно задания практической
(неудовлетворительно)	работы; обучающийся ответил на контрольные вопросы с ошибками или не
	ответил на контрольные вопросы, не представлен отчет по выполнению
	лабораторной работы или предоставлен, но не в соответствие с требованиями.

Тесты являются формой текущего и рубежного контроля и содержат теоретические или (и) практические задания. На выполнение теста студенту выделяется 1 академический час. Задания теста 1 формируются из вопросов тем 1-3, а теста 2 из вопросов тем 4-5.

Примеры тестовых заданий

Тест 1

Тема 1 Вычисление корня уравнения с заданной точностьюс (раздел 2)

Тестовые задания по теме 1:

- Отделить корень (любой) уравнения $3x^4 + 8x^3 + 6x^2 10 = 0$ аналитически. 1)
- Отделить корень уравнения $x^2 2 + 0, 5^x = 0$ графически. 2)
- Построить два приближения корня уравнения $x^3 6x 8 = 0$ методом 3) касательных с погрешностью $\varepsilon = 0.01$, предварительно выполнив его отделение.
- Привести уравнение $\ln x + (x+1)^3 = 0$ к виду, пригодному для его решения 4) методом итераций. Вычислить коэффициент сжимаемости. Записать вид уравнения.
- Что значит вычислить корень уравнения с заданной точностью? 5)
- Условие существования корня на отрезке. 6)
- 7) Условие единственности корня на отрезке.
- Как выбирается нулевое приближение в методе Ньютона? 8)
- 9) При каком условии можно применять метод Ньютона?
- Какая функция называется сжимающей? 10)

Тема 2 Решение системы линейных уравнений прямым и итерационным методом (раздел <u>3)</u>

- $A = \begin{pmatrix} 2 & 3 \\ -4 & 5 \end{pmatrix}$ Выполнить LU — разложение матрицы 1)
- $A = \begin{pmatrix} 2 & -2 \\ -2 & 5 \end{pmatrix}$ Установить положительную определенность матрицы 2) выполнить разложение Холецкого для матрицы A.
- $\begin{cases} 2,7x_1-5,3x_2=4,2\\ 3,3x_1+5,7x_2=3,7 \end{cases}$ некоторым методом 3)
- $x = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 1,3 \\ -0,1 \end{pmatrix}$. Вычислить невязку и ее норму. Расчеты

получен вектор выполнять с точностью 0,0001.

$$\begin{cases} 5x_1 + 8x_2 - x_3 = -7 \\ x_1 + 2x_2 + 3x_3 = 1 \end{cases}$$

- $\begin{cases} 5x_1 + 8x_2 x_3 = -7 \\ x_1 + 2x_2 + 3x_3 = 1 \\ 2x_1 3x_2 + 2x_3 = 9 \end{cases}$ единственное решение. Выяснить имеет ли система 4) Ответ обосновать.
- 5) Какая матрица называется положительно определенной?
- Признаки положительной определенности матрицы 6)

7) Условия применимости метода Холецкого.

Тема 3 *Приближение табличных функций (раздел 4)*

1) Построить интерполяционный полином Лагранжа по таблице

$$\begin{array}{c|cccc} x_i & 1 & 2 \\ \hline y_i & 3,1 & 1,5 \\ \end{array}$$

Привести его к виду L(x) = ax + b. Вычислить его значение в точке x = 1,5.

- 2) Построить нормальную систему уравнений МНК (основную матрицу и столбец свободных членов) для функции вида $y = a_0 \cos x + a_1 x^3$.
 - 3) Вычислить S_{\min} для квадратичного приближения линейной функцией y(x)=2,4x-3,1 заданную табличную функцию:

- 4) Определение интерполирования.
- 5) Какая интерполяция называется параболической?
- 6) Чем определяется степень интерполяционного полинома Лагранжа?
- 7) Суть метода наименьших квадратов.
- 8) В чем различие между интерполяцией и квадратичным приближением?
- 9) За счет чего можно минимизировать погрешность при интерполяции?

Тест 2

Тема 4 <u>Вычисление интегралов методами численного интегрирования (радел 5)</u>

- 1) Составить таблицу функции $y=2^x$ в точках 1; 2; 3. Построить по ней интерполяционный полином и привести его к виду $y_{_{\rm H}}=ax^2+bx+c$. Вычислить производные от данной функции и от полинома в точке 2. Сравнить их между собой и с приближенным значением производной, вычисленной по разностной формуле. Оценить погрешность.
- $\int_{0}^{\frac{\pi}{2}} \sin x \cos^{2} x dx$ 2) Составить таблицу подынтегральной функции $\int_{0}^{\frac{\pi}{2}} \sin x \cos^{2} x dx$ разбиениях. Используя таблицу вычислить интеграл по методу трапеций и методу парабол. Оценить относительную погрешность полученных результатов, сравнивая их с точным значением.
- 3) Найти число разбиений отрезка интегрирования, необходимое для $\int\limits_{4}^{8} \sin\frac{x}{3} dx$ вычисления интеграла $\int\limits_{4}^{8} \sin\frac{x}{3} dx$ методом трапеций и методом парабол с заданной

вычисления интеграла 4 методом трапеций и методом парабол с заданной точностью $\varepsilon = 0,01$.

- 4) Вычислить интеграл $\int_{0}^{2} (x^2 + 3x) dx$ методом трапеций с точностью $\varepsilon = 0,01$, используя для ее оценки правило Рунге.
- 5) Что значит приближенно вычислить определенный интеграл?

- 6) Можно ли сказать какой метод точнее трапеций или парабол? Если да, то какой?
- 7) Основная идея метода ячеек для вычисления двойного интеграла. На чем основывается?
- 8) Какие два понятия из разных математических дисциплин положены в основу метода Монте-Карло для вычисления интеграла?
- 9) Чем определяется точность вычисления определенного интеграла?
- 10) Сформулировать правило Рунге для оценки погрешности.

Тема 5 *Применение численных методов для решения дифференциальных уравнений (раздел 6)*

- 1) Найти две первые точки решения задачи Коши $y'=1+0,2y\sin x-y^2$, y(0)=0 методом Эйлера с шагом h=0,1 .
- 2) Найти значение y_1 методом Рунге-Кутта для задачи Коши $y' = x + y^2$, y(0) = 0.5, если h = 0.1.
- 3) Основные подходы к приближенному решению дифференциальных уравнений
- 4) Что такое порядок сходимости схемы?
- 5) Какая схема называется устойчивой?
- 6) От чего зависит погрешность метода Эйлера?
- 7) Каков порядок схемы «предиктор-корректор»?
- 8) Каков порядок схемы Рунге-Кутты?
- 9) Метод практической оценки погрешности.

В каждый тест включается 10 вопросов практического и теоретического характера.

Шкала оценивания и критерии оценки:

Минимальное количество баллов — 3 балла

Максимальное количество баллов — 5 баллов

- правильный ответ на менее чем 5 вопросов -0 баллов,
- каждый правильный ответ при общем количестве правильных ответов, более чем на 5 вопросов, оценивается в 0,5 балла.

Основаниями для снижения количества баллов являются:

- арифметические ошибки в расчетах,
- неправильное округление при расчетах,
- неточность формулировок,
- недостаточно полное обоснование ответа.

Соответствие баллов шкале оценивания:

Количество	Оценка обучающегося
баллов	
5	отлично
4	хорошо
3	удовлетворительно
менее 3	неудовлетворительно

ДИФФЕРЕНЦИРОВАННЫЙ ЗАЧЕТ

Зачет проводится в устной форме.

В билет включается по два вопроса.

Ответ должен содержать определения понятий, входящих в вопрос, утверждения теорем, изложение методов, указание границ их применимости, обоснование утверждений и методов, примеры применения понятий и теорем к решению задач.

Процедура проведения зачета в устной форме описана в разделе 4 настоящего документа.

Примерный перечень вопросов и задач к зачету:

- 1) Математическая модель. Вычислительная задача и ее виды. Погрешность.
- 2) Системы линейных уравнений. Постановка задачи. Оценка погрешности.
- 3) Системы линейных уравнений. Постановка задачи. Алгоритм исключения Гаусса.
- 4) Системы линейных уравнений. Постановка задачи. LU-разложение.
- 5) Системы линейных уравнений. Постановка задачи. Разложение Холецкого.
- 6) Приближение функции. Постановка задачи. Интерполяция обобщенными многочленами.
- 7) Интерполяция. Постановка задачи. Параболическая интерполяция. Многочлен Лагранжа.
- 8) Параболическая интерполяция. Погрешность интерполяции. Минимизация погрешности.
- 9) Квадратичное приближение. Постановка задачи.
- 10) Квадратичное приближение. Метод наименьших квадратов.
- 11) Численное дифференцирование. Конечные разности.
- 12) Численное интегрирование. Метод прямоугольников.
- 13) Численное интегрирование. Метод трапеций. Практическая оценка погрешности.
- 14) Численное интегрирование. Метод парабол. Практическая оценка погрешности.
- 15) Численное решение задачи Коши. Постановка задачи. Метод Эйлера.
- 16) Численное решение задачи Коши. Постановка задачи. Метод Рунге-Кутта. Практическая оценка погрешности.

Шкала оценивания и критерии оценки:

Критерии оценки	Минимальное количество баллов	Максимальное количество баллов
Уровень усвоения материала, предусмотренного программой	3	4
Умение выполнять задания, предусмотренные программой	2	3
Уровень знакомства с основной литературой, предусмотренной программой	2	3
Уровень знакомства с дополнительной литературой	1	2
Уровень раскрытия причинно-следственных связей	1	2
Уровень раскрытия междисциплинарных связей	1	2
Качество ответа (его общая композиция, логичность, убежденность, общая эрудиция)	1	2
Ответы на вопросы: полнота, аргументированность, убежденность, умение использовать ответы на вопросы для более полного раскрытия содержания вопроса	1	2

Итого баллов:	12	20

Соответствие баллов шкале оценивания:

Количество	Оценка обучающегося
баллов	
18-20	отлично
15-17	хорошо
12-14	удовлетворительно
менее 12	неудовлетворительно

Знания, умения и навыки обучающихся при промежуточной аттестации **в форме** д**ифференцированного зачета** определяются оценками «отлично», «хорошо», «удовлетворительно», «неудовлетворительно».

«Отлично» — обучающийся глубоко и прочно усвоил весь программный материал, исчерпывающе, последовательно, грамотно и логически стройно его излагает, не затрудняется с ответом при видоизменении задания, свободно справляется с задачами и практическими заданиями, правильно обосновывает принятые решения, умеет самостоятельно обобщать и излагать материал, не допуская ошибок.

«Хорошо» — обучающийся твердо знает программный материал, грамотно и по существу излагает его, не допускает существенных неточностей в ответе на вопрос, может правильно применять теоретические положения и владеет необходимыми умениями и навыками при выполнении практических заданий.

«Удовлетворительно» – обучающийся усвоил только основной материал, но не знает отдельных деталей, допускает неточности, недостаточно правильные формулировки, нарушает последовательность в изложении программного материала и испытывает затруднения в выполнении практических заданий.

«Неудовлетворительно» – обучающийся не знает значительной части программного материала, допускает существенные ошибки, с большими затруднениями выполняет практические задания, задачи.

МЕТОДИЧЕСКИЕ МАТЕРИАЛЫ, ОПРЕДЕЛЯЮЩИЕ ПРОЦЕДУРЫ ОЦЕНИВАНИЯ ЗНАНИЙ, УМЕНИЙ, НАВЫКОВ И (ИЛИ) ОПЫТА ДЕЯТЕЛЬНОСТИ, ХАРАКТЕРИЗУЮЩИХ ЭТАПЫ ФОРМИРОВАНИЯ КОМПЕТЕНЦИЙ

Во время проведения лекционных занятий учитывается посещаемость обучающихся, оценивается их познавательная активность на занятии.

Отчет по практической работе представляется в письменном виде в формате, предусмотренном шаблоном отчета по работе. Защита отчета проходит в форме доклада обучающегося по выполненной работе, ответов на вопросы преподавателя.

В случае невыполнения практических работ в установленные сроки обучающемуся необходимо погасить задолженность по невыполненным заданиям до проведения зачета/экзамена. График погашения задолженности устанавливается преподавателем в индивидуальном порядке с учетом причин невыполнения.

Тестирование проводится 2 раза за семестр в письменной форме.

По окончании освоения дисциплины проводится промежуточная аттестация в виде дифференцированного зачета, что позволяет оценить достижение результатов обучения по дисциплине.

Перечень вопросов и список учебной литературы для подготовки к экзамену предоставляется в начале семестра.

Зачет проводится в устной форме. При проведении зачета в устной форме в аудитории может находиться одновременно не более 4-5 обучающихся, оценивание проводится преподавателем непосредственно во время зачета.